
R E V I E W A N D

S Y N T H E S I S A dispersal-induced paradox: synchrony and stability in

stochastic metapopulations

Karen C. Abbott*

Department of Ecology, Evolution

and Organismal Biology, Iowa State

University, Ames, IA 50011, USA

*Correspondence: E-mail:

kcabbott@iastate.edu

Abstract
Understanding how dispersal influences the dynamics of spatially distributed populations is a major priority of

both basic and applied ecologists. Two well-known effects of dispersal are spatial synchrony (positively

correlated population dynamics at different points in space) and dispersal-induced stability (the phenomenon

whereby populations have simpler or less extinction-prone dynamics when they are linked by dispersal than

when they are isolated). Although both these effects of dispersal should occur simultaneously, they have

primarily been studied separately. Herein, I summarise evidence from the literature that these effects are

expected to interact, and I use a series of models to characterise that interaction. In particular, I explore the

observation that although dispersal can promote both synchrony and stability singly, it is widely held that

synchrony paradoxically prevents dispersal-induced stability. I show here that in many realistic scenarios,

dispersal is expected to promote both synchrony and stability at once despite this apparent destabilising

influence of synchrony. This work demonstrates that studying the spatial and temporal impacts of dispersal

together will be vital for the conservation and management of the many communities for which human

activities are altering natural dispersal rates.
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INTRODUCTION

One of the most fundamental results in spatial ecology is that groups

of subpopulations can have dramatically different dynamics when they

are linked by dispersal than when they are isolated. In many instances,

dispersal among spatially separated subpopulations can have a strong

stabilising influence, and such dispersal-driven stability has been

proposed as a key factor promoting coexistence in ecological

communities.

There is an emergent consensus that, for dispersal to enhance

stability, subpopulations must remain asynchronous. If dispersal is

sufficient to cause complete intraspecific synchrony, the exchange

of individuals among those identical subpopulations cannot stabilise

otherwise unstable local dynamics (for a thorough review, see

Briggs & Hoopes 2004). In discussing the stabilising effects of

dispersal, synchrony has thus been treated largely as a caveat:

dispersal can be stabilising unless dispersal is strong enough to induce

perfect synchrony. Meanwhile, the synchronising effect of dispersal is

itself an extremely well-studied topic (Bjørnstad et al. 1999; Koenig

1999; Liebhold et al. 2004), but it has been developed more or less

separately from the work on dispersal-induced stability. Although it

is clear that perfect synchrony (where fluctuations are identical and

in phase) impedes dispersal-induced stability, the effects of

imperfect levels of synchrony like those seen in nature (where

fluctuations are positively correlated, but not identical) are far less

obvious. Do processes that promote any degree of synchrony

necessarily weaken dispersal-induced stability? Or can some

processes simultaneously promote synchrony and stability, as long

as synchrony is incomplete? These questions are complicated

because the propensity for dispersal-induced stability is influenced

directly by attributes such as dispersal rate, local density-dependent

processes and environmental variability. These same attributes can

also affect population synchrony and, due to synchrony’s effect on

dispersal-induced stability, they should have indirect effects on

stability that are separate from their direct effects. A paradox can

emerge when these direct and indirect effects work in opposite

directions, and attempting to intuit the net result is a messy

endeavor, as will become apparent below.

Fully understanding the effects of dispersal is of central importance

to basic ecology because, to put it simply, we know that individuals

move around and we know that such movement can have profound

impacts at the population level (Levin 1974). Understanding the role

of dispersal is fundamental to applied ecology as well. Human

activities can interrupt (e.g. through fragmentation) or accelerate (e.g.

by intentional and unintentional spreading of propagules) how species

move through space, and to mitigate any of these actions, we must

understand the function of dispersal. This is a difficult task, and

ecologists have long recognised that dispersal has complex and some-

times contradictory effects on population dynamics. Dispersal has

been described as a �double-edged sword� (Hudson & Cattadori 1999):

it may protect small subpopulations from local extinction by allowing

an influx of immigrants, but dispersal may also elevate the risk of

global extinction by synchronising subpopulations across a landscape,

so that all are simultaneously small. A synthetic framework for the

multiple simultaneous consequences of dispersal is ultimately needed

for answering basic and applied questions about the role of dispersal

in natural populations. In this article, I adopt the strategy of studying

the theoretical relationship between dispersal’s stabilising and its

synchronising effects as a way to predict which direction the double-

edged sword actually cuts.
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Dispersal-induced stability (Taylor 1990; Briggs & Hoopes 2004)

and synchrony (Bjørnstad et al. 1999; Koenig 1999; Liebhold et al.

2004) have each been reviewed separately elsewhere. Herein, I

summarise key information from past studies that sheds light on the

relationship between dispersal-induced stability and synchrony. I then

characterise the synchrony–stability relationship for a series of models

using both analytical and simulation methods. We see that although

past studies would mostly lead us to expect synchrony-promoting

factors to reduce stability, in many situations, synchrony and stability

are strengthened simultaneously. These results constitute a step

towards an integrated understanding of dispersal’s effects on spatially

distributed populations.

LESSONS FROM THE LITERATURE

Synchronising effects of dispersal

There is broad agreement that dispersal can synchronise spatially-

distinct subpopulations (Bjørnstad et al. 1999; Koenig 1999; Liebhold

et al. 2004; Goldwyn & Hastings 2008). Intuitively, we might expect

that if some dispersal causes some degree of synchrony, more

dispersal will cause more synchrony. This indeed appears to be the

case for many models (e.g. Hanski & Woiwod 1993; Ranta et al. 1998;

Lande et al. 1999), although others show a U-shaped (Jansen 2001),

hump-shaped (Ripa 2000) or even decreasing (Koelle & Vandermeer

2005) relationship between dispersal and synchrony. Experimental

studies have mostly shown higher synchrony with greater dispersal

(Holyoak & Lawler 1996; Dey & Joshi 2006; Vogwill et al. 2009), and

an observed correlation between dispersal ability and synchrony in

natural bird populations supports this notion (Paradis et al. 1999).

For subpopulations with cyclic dynamics due at least partly to

intrinsic nonlinearities, even small amounts of dispersal can result in

very high synchrony by phase locking (Jansen 1999; Bjørnstad 2000).

However, if local fluctuations in density are instead due entirely to

stochastic variation, the synchronising effect of dispersal is often

negligible (Hanski & Woiwod 1993; Haydon & Steen 1997; Vasseur &

Fox 2009). Dispersal patterns that depend on local densities may

result in lower synchrony than comparable amounts of density

independent dispersal (Ims & Andreassen 2005; Li et al. 2005).

In general, a given level of dispersal can result in very different levels

of population synchrony depending on what other deterministic and

stochastic factors affect local dynamics.

Stabilising effects of dispersal

Interpreted broadly, �stability� can refer to the dynamical stability of an

equilibrium solution, a small amplitude of fluctuations in oscillatory

populations, a minimum population density that is not too low, a long

persistence time or a low probability of extinction in a given time

frame. All of these represent real phenomena relating to different

aspects of stability and if any of these is strengthened when

subpopulations are linked by dispersal relative to when they are

isolated, then we have dispersal-induced stability (�DIS�; see Allen

1975; Reeve 1988; Martı́ & Masoller 2003; Hillary & Bees 2004; Ives

et al. 2004, for examples with different types of stability). Random

dispersal alone cannot increase population stability (Reeve 1988), but

the combination of spatial heterogeneity and dispersal can generate

DIS in several different ways (reviewed in Briggs & Hoopes 2004).

First, stability can result when the net immigration rate into a

particular subpopulation is essentially independent of the local

population density (e.g. Crowley 1981; Hastings 1993; Amarasekare

2008). This can occur, for example, if individuals leave their current

subpopulation at a constant rate and subpopulations are at least

somewhat asynchronous. Transit time can likewise be stabilising by

introducing a time delay that decouples immigration from current

density (Neubert et al. 2002; Klepac et al. 2007).

DIS arises by a second mechanism in some multi-species models

(e.g. Gurney et al. 1998; de Roos et al. 1998; Gurney & Veitch 2000),

where self-organised spatial patterns result in spatially heterogenous

population densities. As individuals move around this heterogenous

landscape, the average demographic parameters they experience will

differ from parameters in an analogous, but homogeneous landscape,

due to the nonlinear nature of species interactions. In some cases,

those nonlinear average parameters produce more stable dynamics

than the parameters of the well-mixed landscape. Furthermore, this

spatial heterogeneity in population densities can simultaneously

promote the first type of dispersal-induced stability, by weakening

the relationship between local density and net immigration (Hassell

et al. 1991a; Comins et al. 1992).

Under conditions where populations can be deemed more stable

with dispersal than without it, there is little consensus on whether

adding more dispersal will be more or less stabilising (Gonzalez-

Andujar & Perry 1993; Gyllenberg et al. 1993; Hastings 1993; Doebeli

1995). Indeed, DIS has been shown to either increase (e.g. Hassell

et al. 1991b; Engen 2007), decrease (e.g. Taylor 1998; Hosseini 2003;

Hirzel et al. 2007) or have a hump-shaped relationship (Allen 1975;

Comins et al. 1992; Hastings 1993; Molofsky & Ferdy 2005; Abta et al.

2007) with increasing dispersal. Dispersal might even promote some

types of stability while interfering with others (Reeve 1988, 1990;

Legendre et al. 2008; Higgins 2009), and density dependent movement

patterns may enhance (Hassell & May 1973; Chesson & Murdoch

1986; Doebeli 1995; Amarasekare 2004; Li et al. 2005) or inhibit

(Reeve 1988; Murdoch et al. 1992; Rohani et al. 1994; Huang &

Diekmann 2001; Sapoukhina et al. 2003; Higgins 2009) DIS. General

arguments in favour of maximum DIS at intermediate dispersal rates

recognise a balance between stabilising and destabilising effects of

dispersal. When high dispersal rates maximise an individual’s ability to

migrate into high quality patches within a spatially variable landscape,

and low dispersal rates minimise the risk of moving into a patch with

declining quality within certain (autocorrelated) temporally variable

landscapes, intermediate levels of dispersal allow populations to

benefit most from both spatial and temporal sources of heterogeneity

(Schreiber 2010). Intermediate dispersal may also balance a reduced

local extinction risk from immigrants rescuing dwindling subpopula-

tions, against an elevated global extinction risk from dispersal-driven

synchrony allowing simultaneously low population densities (Reeve

1990; Adler 1993; Keeling 2000).

The interaction between synchrony and dispersal-induced stability

So far, we have seen two hints about the relationship between

synchrony and DIS. First, dispersal among perfectly synchronous

subpopulations has no stabilising effect (e.g. Abta et al. 2008; Higgins

2009; Hauzy et al. 2010). Second, dispersal among populations that are

not perfectly synchronous can induce stability. If we think of these

two statements as two points in the synchrony–DIS relationship, then

we clearly have a negative relationship: greater synchrony is associated

with less dispersal-induced stability. This is a bit unsatisfactory, as it
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is obviously shaky to base a general relationship on only two points.

Furthermore, one of these points has questionable relevance for real

populations. Although population synchrony (that is, positively

correlated population dynamics) is relatively common, perfect

synchrony (identical population dynamics) is not expected for any

real pairs of populations separated in space. If perfect synchrony is a

special case and not indicative of the effects of strong, but incomplete

synchrony on dispersal-induced stability, then we clearly lack the

information needed to draw conclusions about the synchrony–DIS

relationship (Hudgens 2007).

The synchrony–DIS relationship has rarely been studied explicitly.

Araujo & de Aguiar (2008) found that both synchrony and DIS

increased together as the number of subpopulations increased,

suggesting a positive synchrony–DIS relationship. In contrast,

Murdoch et al. (1992) varied the strength of density dependence in

dispersal and found that DIS was nearly always higher when dispersal

generated lower levels of synchrony. Together, these studies reveal

that while some processes promote both synchrony and DIS, resulting

in a positive relationship, others may promote one at the expense of

the other, giving a negative one. The question at the heart of this

review is whether changing the total amount of dispersal generates a

positive or negative synchrony–DIS relationship. Increasing dispersal

can have simultaneous synchronising and stabilising effects when

there are fixed differences among patches (Gyllenberg et al. 1993).

However, a dispersal rate with some given degree of DIS may produce

very different levels of synchrony under different model conditions

(Hastings 1993; Kendall & Fox 1998; Münkemüller & Johst 2007).

It is important to remember that �stable� coupled subpopulations

(those with equilibrial dynamics, low variance, high persistence, etc.)

may or may not be stable due to DIS; DIS exists only if stability is greater

with dispersal than without it. Linked subpopulations with complex

population dynamics tend to have lower synchrony, lower global

extinction risk and higher local extinction risk than those with simpler

dynamics (Allen et al. 1993; Heino et al. 1997; Matter 2001). However, as

local and global persistence are probably influenced simultaneously by

dispersal and by the complexity of the local dynamics, the actual

influence of synchrony on DIS is obscured. Similarly, other studies that

report negative (Hanski & Woiwod 1993; Ripa 2000; Holland &

Hastings 2008) or null (Griffen & Drake 2009) relationships between

synchrony and various measures of stability in the presence of dispersal

may not tell us much about how synchrony and DIS interact, as we need

direct information on how much of the observed stability is due to

dispersal to determine how synchrony modifies DIS. Nonetheless, an

association between higher synchrony and increased variability or

extinction emerges from many of these past studies, and this may lead us

to also expect a negative relationship between synchrony and DIS.

Dispersal does not inevitably increase stability. Reaction-diffusion

models, which lack the necessary combination of heterogeneity and

subdivision, are either unaffected or destabilised by dispersal (Levin

1974), and even discrete and heterogeneous metapopulations are not

invariably stabilised by dispersal (Kareiva 1987; Neubert et al. 1995;

Rohani & Ruxton 1999; Vogwill et al. 2009). When dispersal is

destabilising, it is easy to piece together a story that makes good

intuitive sense: dispersal both decreases stability and increases

synchrony, yielding a negative synchrony–DIS relationship that agrees

with the prevailing idea that synchrony interferes with DIS. When

dispersal is stabilising, the story becomes confusing. If dispersal

promotes synchrony and stability simultaneously (Ruxton & Rohani

1999; Martı́ & Masoller 2003; Hillary & Bees 2004; Matthews &

Gonzalez 2007), we expect an indirect positive synchrony–DIS

relationship. However, if synchrony inhibits DIS, this suggests a direct

negative relationship. One question with practical implications, then, is

whether increasing linkages between habitat patches is likely to have an

overall positive (due to DIS) or an overall negative (due to synchrony

interfering with DIS) effect on population stability and persistence.

The role of environmental variability

Conditions affecting real populations are not uniform through time

and space, and this can have important consequences for both

synchrony and DIS (McMurtrie 1978; Heino 1998; Keeling et al. 2002;

Bonsall & Hastings 2004). Variability due to fixed spatial heterogeneity

(Ives 1992; Holt & Hassell 1993; Singh et al. 2004) or uncorrelated

environmental stochasticity (Taylor 1998; Abta et al. 2007; Araujo &

de Aguiar 2008) discourages synchrony and has thus been cited as a

factor that can promote DIS (Abta et al. 2008). However, as countless

synchrony researchers have pointed out, environmental variability is

often spatially correlated (Koenig 1999) and may actually be a very

common driver of population synchrony (e.g. Hanski & Woiwod

1993; Grenfell et al. 1998; Peltonen et al. 2002), challenging the notion

that spatiotemporal variability necessarily promotes DIS by inhibiting

synchrony. One goal of the present study is to consider spatially

correlated environmental stochasticity while examining the relation-

ship between synchrony and DIS.

QUANTIFYING THE SYNCHRONY–DIS RELATIONSHIP

For any metapopulation model, a given dispersal rate will lead to a

particular expected level of synchrony and a particular expected

strength of dispersal-induced stability. A different dispersal rate might

give different levels of synchrony and DIS, and by looking across

multiple dispersal rates, the synchrony–DIS relationship emerges.

If dispersal rates that promote synchrony also inhibit stability, then we

will see a negative synchrony–DIS relationship.

Following convention in the synchrony literature, I use the average

pairwise correlation coefficient among subpopulation dynamics to

measure population synchrony. Many different ways of measuring

population stability have been employed, and I will consider several of

them. For the analytical work presented below, I use the within-

subpopulation variance in density as a metric of stability because the

variance is relatively straightforward to calculate. Dispersal-induced

stability, then, is the extent to which this variance is reduced in the

presence of dispersal relative to an identical collection of subpopu-

lations not linked by dispersal. I use the ratio of the variance without

dispersal to the variance with dispersal as the main measure of DIS.

When the variance with dispersal is small relative to the variance

without dispersal, this ratio will be large and thus high values of the

DIS metric imply greater dispersal-induced stability. Different

measures of stability may behave differently, so for the simulations

below, I consider not only the population variance but also the local

and global extinction rates. For all metrics, I again use the ratio of the

values without to with dispersal to quantify DIS.

ANALYTICAL SYNCHRONY–DIS RELATIONSHIP

IN A SIMPLE MODEL

Ecological models become complicated quickly as spatial patches

and species are added, so it is useful to begin with a single-species
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model that is simple enough that quantities like synchrony and DIS can

be solved for explicitly. Consider n first-order autoregressive (AR(1))

subpopulations linked by global, density independent dispersal. If Hi,t is

the density of our species of interest in subpopulation i at time t, then

Hi;t ¼ að1� dÞHi;t�1 þ
X

j¼1

j 6¼i

n
ad

n� 1
Hj ;t�1 þ ei;t : ð1Þ

Herein, d is the fraction of each subpopulation to disperse each time

step and a describes the effects of reproduction, death and density-

independent species interactions. The term ei,t is a random variable

representing environmental stochasticity. I assume that this stochas-

ticity has mean 0 and variance r2
e , is temporally uncorrelated and has

spatial correlation qe.

The within-patch temporal variance in density in the absence of

dispersal, denoted r2
0, is r2

e=ð1� a2Þ and the variance in the presence

of dispersal is r2
H ¼ r2

e
c1�c2 1�ðn�1Þð1�qeÞð Þ
ð1�a2Þðc1�c2Þ (Ripa 2000), where the

substitutions c1 ¼ 1� a2 ð1� dÞ2 þ d 2

n�1

� �
and c2 ¼ � a2

n�1
2d � nd 2

n�1

� �
are used here for brevity. DIS, then, is the ratio

r2
0

r2
H

¼ c1 � c2

c1 � c2 1� ðn� 1Þð1� qeÞð Þ : ð2Þ

Population synchrony is given by the spatial correlation in abundance,

qH ¼
c1qe � c2

c1 � c2 1� ðn� 1Þð1� qeÞð Þ ð3Þ

(Ripa 2000). These results assume |a| < 1, as subpopulations with

|a| > 1 lack a stationary distribution of population densities for

which statistical properties like the variance may be calculated.

Equations (2) and (3), respectively, give the levels of DIS and

synchrony that are expected for specified values of a, d, n and qe. The

synchrony–DIS relationship emerges from changes in these values

that cause concurrent changes in both synchrony and DIS; herein we

are interested in the concurrent effects of changing d. The partial

derivatives of equations (2) and (3) with respect to d reveal that

synchrony and DIS are always affected the same way by changes in d

(Fig. 1a,b; Appendix S1). For most parameter values, this means that

both quantities increase with d. In this simple model, then, the

relationship between synchrony and DIS is positive for any values of

a, n and qe (Fig. 1c).

The slope of the synchrony–DIS relationship is steepest for lower

environmental correlations and flattens as qe increases (Fig. 1c). At

qe ¼ 1, the relationship condenses to a single point at which DIS and

synchrony are both 1. This is the limiting case where dispersal cannot

induce stability because the populations are perfectly synchronous.

The other situation in which dispersal cannot induce stability is when

a ¼ 0, in which case the population dynamics are purely stochastic

and dispersal therefore has no effect (the populations are not,

however, perfectly synchronous at a ¼ 0 unless qe ¼ 1). Apart from

these two special cases where d has no effect on either synchrony or

DIS, levels of dispersal that enhance dispersal-induced stability always

simultaneously promote synchrony.

SYNCHRONY–DIS RELATIONSHIP IN NONLINEAR

METAPOPULATIONS

The AR(1) model has the advantage that it can be fully understood

analytically, but it fails to capture the nonlinear intra- and interspecific

interactions that characterise real communities. I now use classic

nonlinear single-species and host–parasitoid models to study the

synchrony–DIS relationship in more realistic ecological systems. The

notion that dispersal can be stabilising has generated quite a lot of

interest with respect to host-parasitoid communities, in particular,

because, although such communities persist in nature, simple models
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Figure 1 The effect of changing dispersal rate, d, on both

dispersal-induced stability and synchrony in the AR(1) model.

Synchrony was measured as the pairwise correlation in population

densities. Stability was measured as the temporal variance in

density and DIS is the ratio of this variance in the absence of

dispersal to the variance with dispersal. The relationships shown

here are given by equations (2) and (3). (a) Dispersal rate vs. DIS;

(b) dispersal rate vs. synchrony; (c) synchrony vs. DIS. In all

instances, a ¼ 0.8 and n ¼ 5; labels indicate the value of qe used

for each line plotted.
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of host–parasitoid interactions are particularly prone to instability. The

work presented below shows that although the mathematical and

biological assumptions of nonlinear models differ enormously from

the very simple AR(1), the shape of the synchrony–DIS relationship is

largely robust to these differences.

Models

A common model for nonlinear, single-species dynamics is the Ricker

model,

H 0i;t ¼ Hi;t�1 expðkð1�Hi;t�1ÞÞ; ð4Þ

where H 0i;t is the population density in subpopulation i at time t before

accounting for any effects of dispersal, and Hi,t)1 is the density after

accounting for dispersal that occurred during time step t ) 1. When

subpopulations are linked by dispersal, a separate dispersal model,

discussed below, describes the transition from H 0i;t to Hi,t. The

maximum local population growth rate is exp(k), and the realised

population growth rate decreases with local density. In the absence of

dispersal and for k < 2, the Ricker model has a stable equilibrium

point at H ¼ 1; for larger values of k the model exhibits 2n-point

cycles and chaos.

Most host–parasitoid metapopulation models are based on

the Nicholson–Bailey model or its variant, the negative binomial

model:

H 0i;t ¼ kHi;t�1 1þ bPi;t�1

k

� ��k

ð5aÞ

P 0i;t ¼ Hi;t�1 1� 1þ bPi;t�1

k

� ��k
 !

: ð5bÞ

As before, H 0i;t and P 0i;t are, respectively, the densities of hosts and

parasitoids in subpopulation i at time t before dispersal, and Hi,t)1 and

Pi,t)1 are the densities after dispersal. In the absence of the parasitoid,

the host population increases at rate k. The mean per capita parasitism

rate is b and parasitoid attacks are assumed to be distributed non-

randomly among hosts according to a negative binomial distribution

with shape parameter k. At k ¼ ¥, attacks are randomly distributed

among hosts and model (5) becomes equivalent to the standard

Nicholson–Bailey model. With k > 1 and k < 1, the negative bino-

mial model predicts stable coexistence of the host and parasitoid.

Otherwise, the populations undergo divergent oscillations and even-

tual extinction in the absence of dispersal.

It is interesting to notice that if we assume that the parasitoid

population is constant in time, the host–parasitoid model is equivalent

to the AR(1) with a ¼ k 1 þ bP
k

� ��k
. This assumption changes the

interpretation of the model in important ways: although models like

equation (5) describe interactions between a tightly coupled pair of

species, the simplified AR(1) model instead represents the case where

hosts are attacked by a stable population of generalist parasitoids.

Thus, although the algebra needed to get from the host-parasitoid

model to the AR(1) model is quite simple, both the mathematical and

biological characteristics of the models are dramatically different.

Thus, the nonlinear host-parasitoid model provides a particularly

useful means of testing the generality of the analytical results derived

using the AR(1) model.

Simulations

I ran a series of simulations in which the local dynamics were

governed by either the Ricker or the negative binomial model and

examined the synchrony–DIS relationship for Hi,t. I again included an

effect of environmental stochasticity, incorporated here by multiplying

H 0i;t in equation (4) or (5a) by exp(ei,t). In time step t, a fraction DH,i,t

of the host population (and, for host-parasitoid simulations, a fraction

DP,i,t of the parasitoid population) in patch i emigrates after parasitism

and reproduction occur. A fraction Ii,j of these dispersers leaving

i settle in patch j before the start of the next time step. With pre-

dispersal densities given by equation (4) or (5), the complete model is

then,

Hi;t ¼ ð1�DH ;i;t Þ expðei;t ÞH 0i;t þ
X

j¼1

j 6¼i

n

DH ;j ;t Ij ;i expðej ;t ÞH 0j ;t ð6aÞ

for all simulations, with

Pi;t ¼ ð1�DP ;i;t ÞP 0i;t þ
X

j¼1

j 6¼i

n

DP ;j ;t Ij ;i P
0
j ;t ð6bÞ

for host-parasitoid simulations.

As above, ei,t has mean 0, variance r2
e and spatial correlation qe. For

the Ricker model, I also considered the possibility that dynamics were

affected by both environmental and demographic stochasticity. For

this,

Hi;t ¼ ð1�DH ;i;t Þ expðei;t þ /i;t ÞH 0i;t

þ
X

j¼1

j 6¼i

n

DH ;j ;t Ij ;i expðej ;t þ /j ;t ÞH 0j ;t
ð7Þ

was used in place of equation (6a). The additional random variable /i,t

represents demographic stochasticity and has mean 0, variance

r2
d=Hi;t�1 and no spatial or temporal correlation. Demographic sto-

chasticity could alternatively be incorporated by using equation (6a) to

obtain an expected population density for each subpopulation, mul-

tiplying by a constant representing the carrying capacity to convert the

local population density to an expected number of individuals, and

then sampling about this expected number from a Poisson distribu-

tion to give the realised number of individuals. This is perhaps a more

elegant method of representing demographic stochasticity, but it tends

to make large metapopulations extremely resistant to global extinction

in the presence of dispersal because the probability of sampling a

realised population size of zero for each of many subpopulations

simultaneously is quite small, even for subpopulations with rather low

carrying capacities. To permit exploration of a model in which global

extinction is a more meaningful threat, I show here only results using

the formulation of demographic stochasticity shown in equation (7).

With the exception of global extinction risk, equation (7) and the

Poisson formulation of demographic stochasticity yield qualitatively

identical results (K. Abbott, unpublished results).

The values of DH,i,t and DP,i,t were determined using a separate

emigration model. I considered nine different emigration rules

representing both density independent and -dependent dispersal of

either or both species, and with or without dispersal mortality

(Appendix S2). For all emigration rules, higher values of the

parameter d always correspond to a greater tendency to disperse

(Appendix S2). In combination with these emigration rules, I

considered three different immigration models: global (Ii;j ¼ 1
n
),
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nearest-neighbor (Ii;j ¼ 1
4

for j adjacent to i; otherwise Ii,j ¼ 0), or an

intermediate rule whereby most individuals move short distances, but

some may move farther (using a discretised exponential dispersal

kernel; Appendix S2).

Spatial simulations were done on a 10 · 10 grid of subpopulations

until global extinction or for 500 time steps, and I used log host densities

from the final 50 time steps for analyses. The size of the grid was chosen

based on Reeve’s (1988) finding that, for a model similar to the host-

parasitoid one used here, persistence initially increased with grid size, but

reached an asymptote with fewer than 100 subpopulations. The

simulations were done in pairs: one realisation with dispersal according

to some combination of the above rules, and one realisation with no

dispersal. Both members of the pair were subjected to the same

sequence of random environmental variates, ei,t, and had the same initial

conditions chosen randomly near the dispersal-free equilibrium of the

model. The grid was assumed to have reflecting boundaries (with one

exception; see Table 1), such that individuals dispersing off the grid

were replaced by an equal number of immigrants from unmodeled

populations assumed to exist around the grid.

To test the predictions of the AR(1) model, I varied d between 0.05

and 0.5, while holding the other parameters constant. The parameter b

in the host-parasitoid model scales the equilibrium population densities,

but has no effect on the model’s dynamics, so for all simulations, b ¼ 1.

Other parameters were selected in combinations that covered a range

of ecological situations; these combinations are summarised in Table 1

and were used in conjunction with the various dispersal rules. With each

simulated scenario, 50 pairs of realisations (with and without dispersal)

were generated for each value of d. The average level of synchrony and

the average DIS were calculated for each d, and the correlation between

these average values was used to describe the synchrony–DIS

relationship across different dispersal rates.

For comparison with the AR(1) results, I measured stability in the

simulations as the variance in log host density, with DIS equal to the

ratio of the variance without dispersal to the variance with dispersal.

Temporal variance is of course just one of many ways to characterise the

stability of a population. Dispersal is known to affect local and global

extinction risks (Roy et al. 2005), but it is unknown if the synchrony–DIS

relationship will be the same when stability is measured in terms of

extinction risk rather than by the variance in local density. To investigate

this, I also recorded the frequency of local extinctions (the number of

time steps with local density below an extinction threshold) as well as the

global extinction rate (the inverse of the time until all local populations

were simultaneously below the threshold). Subpopulations were

considered extinct if the local density of either species dropped below

1/1000th of its dispersal-free equilibrium density. If a subpopulation

persisted until the end of the simulation (500 time steps), its extinction

time was assumed to be 501 time steps. This is obviously an

underestimate, but these truncated cases showed the same general

patterns as those where extinction occurred before 500 generations.

Table 1 Parameter combinations used in the simulations. For all parameter sets, d

was varied between 0.05 and 0.5 at increments of 0.05 and b ¼ 1, r2
d ¼ 0, 0.01 or

0.1, v ¼ 1.5, m ¼ 2, l ¼ 0.2 and h ¼ 0.75 times the equilibrium density of the

dispersal-free model (the parameters f, v, m, l and h are used in the models for

dispersal; see Appendix S2). Abbreviations: BCs, boundary conditions; Refl,

reflecting; Abs, absorbing; jjDEjj, magnitude of the dominant eigenvalue for local

dynamics in the absence of dispersal (values > 1 indicate that isolated subpopu-

lations lack a stable equilibrium point)

Model Ricker Negative binomial

Parameter set (i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

BCs Refl Refl Refl Refl Refl Abs Refl Refl

k 1.5 2.6 2.6 3 3 3 1.5 2

k – – – – 0.2 0.2 0.2 0.8

f – – – – 0.1 0.1 0.1 0.6

r2
e 0.1 0.1 0.5 0.1 0.2 0.2 0.1 0.5

qe 0.1 0.3 0.1 0.1 0.3 0.3 0.05 0.1

jjDEjj 0.5 1.6 1.6 2 0.61 0.61 0.72 0.96
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Figure 2 The relationship between synchrony and dispersal-

induced stability that is generated by varying the dispersal rate, d.

Synchrony was measured as the correlation in log host densities,

and stability was measured as the variance in log host density. DIS

is the ratio of this variance in the absence of dispersal to the

variance with dispersal. (a) One representative example of a

synchrony–DIS relationship. The dots show the means of 50

replicates for each value of d and the line is a linear regression

fitted to these means. In this example, the negative binomial

model is shown with parameter set (v), an immobile parasitoid and

a host with global density-dependent dispersal (m ¼ 2, h ¼ 1.65

(¼ 0.75 times the dispersal-free host equilibrium)). (b, c) Summary

of the synchrony–DIS relationships across a range of scenarios

(Table 1 with r2
d ¼ 0 or 0.01 and additional assumptions as

described in Appendix S2); (b) shows the Ricker model and (c)

shows the negative binomial model. For each simulated scenario, a

correlation coefficient between population synchrony and dis-

persal-induced stability was calculated based on log host densities.

Significant (P < 0.05) synchrony–DIS correlations are shown in

black, and non-significant correlations are shown in white.
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Simulation results

For most simulations of the Ricker model and the negative binomial

model, dispersal-induced stability (when measured as the ratio of host

variance without and with dispersal) and host synchrony both typically

increased with the dispersal parameter, d. The example shown in

Fig. 2a is a good representative of the tight positive relationship

between synchrony and this variance-based DIS seen in most of the

simulations. Figure 2b,c shows histograms of correlations between

DIS and synchrony from all the simulations, with significant

(P < 0.05) correlations shown in black. Clearly, the majority of cases

showed a very high positive correlation, in agreement with the positive

relationship predicted by the AR(1) model. In a small minority of

cases, dispersal was purely destabilising (DIS < 1) for every value of

the dispersal parameter d and regardless of the level of synchrony.

As explained in the literature review above, the main question

motivating this study is the interplay between dispersal-induced

stability and synchrony, and these examples of dispersal-induced

instability do not speak to the issue at hand. Therefore, I show results

only from scenarios in which dispersal was stabilising for at least one

of the d values considered.

Although it was anticipated by the simple AR(1) model, it is

nonetheless striking that so many of the nonlinear simulations reveal a

positive synchrony–DIS relationship. This positive relationship was

predicted based on a very simple model with density independent,

global dispersal of one species. The simulation results show that the

positive relationship is robust to many possible dispersal behaviours

and to much more complex local dynamics. Close examinations of

individual simulation results revealed that boundary conditions (i.e.

whether dispersing individuals �bounced� back or disappeared if they

attempted to disperse off the edge of the grid), specific immigration

rules, dispersal mortality and demographic stochasticity had no

qualitative impact on these conclusions.

Interestingly, the synchrony–DIS relationship becomes strongly

negative when DIS is measured in terms of either local or global

extinction rather than by host variance (Fig. 3). That is, dispersal rates

that result in the highest levels of synchrony also give the weakest

protection against both local and global extinction. High synchrony

has long been thought to increase at least global extinction risk (Allen

et al. 1993; Heino et al. 1997; Matter 2001). Dispersal is also known to

affect some measures of stability differently (Reeve 1988, 1990), and

more variable subpopulations may, counter-intuitively, actually be less

extinction prone when embedded in a metapopulation (Legendre et al.

2008). Therefore, the contrast between Figs 2 and 3 is in many ways

expected. Results in the next section, however, reveal that the

relationship between synchrony and extinction-based measures of DIS

are not invariably negative, nor are they always at odds with the

variance-based DIS measure.

OTHER FACTORS THAT AFFECT BOTH SYNCHRONY AND

DISPERSAL-INDUCED STABILITY

The positive synchrony–DIS relationships shown in Figs 1 and 2

appear to contradict past results suggesting that synchrony counteracts

dispersal-induced stability. This is actually not as surprising as it may at

first seem, because this study has considered only models in which

stochasticity prevents perfect synchrony as in natural populations. In

contrast, the perception that the synchrony–DIS relationship should

be negative has been heavily influenced by the lack of DIS in perfectly

synchronous populations. One study that did consider ecologically

relevant levels of synchrony also reported a negative synchrony–DIS

relationship (Murdoch et al. 1992, who measured DIS as the change

caused by dispersal in the dominant eigenvalue of the within-

subpopulation model), in contrast to the positive relationship shown

here for some forms of DIS. Recall, though, that the synchrony–DIS

relationship is generated when some aspect of the model is changed.

Earlier, I changed the dispersal rate parameter, d, whereas Murdoch

et al. (1992) varied either the magnitude of fixed spatial differences in

the local model’s parameters or the strength of density dependence

in dispersal. This comparison suggests that although some factors can

simultaneously promote both synchrony and DIS (Figs 1 and 2),

others that promote synchrony inhibit DIS (Murdoch et al. 1992).

In other words, the synchrony–DIS relationship might change not just

−1 −0.5 0 0.5 1
0

1

2

3

4

5

6

7

8
Ricker, local extinction

Ricker, global extinction

Synchrony−DIS correlation

F
re

qu
en

cy

−1 −0.5 0 0.5 1
0

1

2

3

4

5

6

7

8

Synchrony−DIS correlation

F
re

qu
en

cy

(a)

(b)

Figure 3 The relationship between synchrony and dispersal-induced stability that

is generated by varying the dispersal rate, d. Synchrony was measured as the

correlation in log host densities, and stability was measured by (a) the frequency

of local extinctions or (b) the global extinction rate. In both cases, DIS is the ratio

of stability in the absence of dispersal to stability with dispersal. Histograms show

the synchrony–DIS relationships for the Ricker model across a range of scenarios

(Table 1 with r2
d ¼ 0.01 or 0.1 and additional assumptions as described in

Appendix S2). Significant (P < 0.05) synchrony–DIS correlations are shown in

black and non-significant correlations are shown in white.
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for different definitions of stability (as for Fig. 2 vs. Fig. 3) but also

for different underlying causes of synchrony and dispersal-induced

stability.

Like dispersal, correlated environmental perturbations can bring

distinct subpopulations into synchrony (Moran 1953; Hanski &

Woiwod 1993; Grenfell et al. 1998; Lande et al. 1999). Although

uncorrelated environmental variability can increases metapopulation

persistence by inhibiting synchrony (Crowley 1981; Comins et al.

1992), real subpopulations that are close enough to be linked by

dispersal may also experience environmental perturbations that are

similar. A metapopulation’s ability to increase when rare can be

reduced by spatial correlations in environmental fluctuations (Schre-

iber 2010), and global extinction risk can increase with environmental

correlation due to increased synchrony (Harrison & Quinn 1989;

Heino et al. 1997; Palmqvist & Lundberg 1998; Engen et al. 2002).

If environmental correlations persist over large enough spatial scales,

DIS can be lost (Crowley 1981; Hassell et al. 1993). These results

suggest, and the AR(1) confirms (Appendix S1) that the synchrony–

DIS relationship that emerges from changes in environmental

correlation, qe, should be negative. To test this relationship using

simulations, I held d constant at 0.1 or 0.3 and varied qe between 0.1

and 0.9. Figure 4 shows a strong negative synchrony–DIS relationship

in the majority of simulations and for all measures of stability

considered. This means that environmental correlations that promote

synchrony weaken dispersal-induced stability.

Another well-studied contributor to population synchrony is the

dynamical behaviour of subpopulations in the absence of dispersal.

Weakly regulated subpopulations are sometimes more readily syn-

chronised by dispersal than ones in which strong regulation quickly

returns densities to equilibrium following perturbations (Reeve 1990;

Lande et al. 1999; Ripa 2000; Engen et al. 2002). Taylor (1998) indeed

found that populations with more dynamically-unstable local dynam-

ics (meaning those that lack the tendency to return to an equilibrium

following disturbance) were at higher risk of global extinction, due

apparently to the combination of higher synchrony and the inherently

higher risk of local extinction that is associated with dynamical

instability. In contrast to these examples, however, there is a body of

theory showing that reduced dynamical stability can actually result in

lower synchrony. Specifically, cyclic subpopulations are particularly

prone to dispersal-driven synchronisation, whereas some chaotic

subpopulations strongly resist synchrony (Allen et al. 1993; Heino et al.

1997; Jansen 1999; Bjørnstad 2000; Earn et al. 2000; but see Blasius

et al. 1999). Furthermore, dispersal can actually change the dynamical

stability of subpopulations in some models (Ives 1992; Murdoch et al.

1992), perhaps then changing their propensity to become synchro-

nous. The actual relationship between DIS and synchrony that results

from changes in local dynamics therefore cannot be readily resolved

from existing literature. The AR(1) model predicts that changing a, the

absolute value of which determines local dynamical stability, causes

synchrony and dispersal-induced stability to increase together

(Appendix S1). To examine the role of dynamical stability in the

simulations, I varied k between 0.1 and 0.9 (negative binomial

simulations) or k between 1.5 and 3 (Ricker simulations), with d and qe

held constant (d ¼ 0.1 or 0.3 and qe as in Table 1). Figure 5 shows

strong support for the predicted positive relationship, regardless of

the model or measure of stability employed.

DISCUSSION

Perhaps the most basic question in spatial ecology is, what happens

when populations are linked by dispersal? That spatial ecology is such

a rich and exciting field is due at least in part to the fact that this

question has so many answers. Two such answers have received a

great deal of attention: First, dispersal can bring populations into

synchrony. Second, populations may become more stable when they

are linked by dispersal. Herein, I have highlighted some of the ways
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(d)Figure 4 The relationship between synchrony and dispersal-

induced stability that is generated by varying the strength of

environmental correlations, qe. Synchrony was measured as the

correlation in log host densities, and stability was measured by

(a, b) variance in host density, (c) the frequency of local

extinctions or (d) the global extinction rate. In all cases, DIS is

the ratio of stability in the absence of dispersal to stability with

dispersal. Histograms show the synchrony–DIS relationships for

(a,c–d) the Ricker model and (b) the negative binomial model

across a range of scenarios (see Table 1 and Appendix S2).

Significant (P < 0.05) synchrony–DIS correlations are shown in

black and non-significant correlations are shown in white. The

relationship is usually negative, as predicted by the AR(1) model.
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in which these two effects interact with one another. In particular, I

have shown that dispersal rates that promote synchrony can

simultaneously promote some forms of DIS, that synchrony can

have the same or opposite relationships with different forms of DIS,

and that different mechanisms can produce different synchrony–DIS

relationships.

So what, really, is the effect of synchrony on dispersal-induced

stability? The work presented here shows that synchrony and DIS can

either be positively or negatively correlated. Positive correlations like

those shown in Fig. 2 could have two different explanations. One

possibility is that factors that promote synchrony simultaneously

promote DIS. We see evidence for this in the AR(1) and nonlinear

models: amounts of dispersal (and strengths of local regulation) that

promote dispersal-induced stability can also promote synchrony,

leading to a positive indirect synchrony–DIS relationship (Figs 1, 2

and 5). A second possible explanation for positive synchrony–DIS

correlations is that synchrony per se promotes dispersal-induced

stability. From previous DIS studies, we would actually expect the

opposite. Interestingly, it appears as though this expected negative

relationship also exists in the simulations presented here. Figure 6

shows the results from a single set of model assumptions, simulated

50 times to give the 50 points that appear in the figure. Any variation

among the 50 points is due entirely to randomness rather than to

differences in the deterministic drivers of synchrony and DIS. The

clear negative relationship shown in Fig. 6 example is representative

of the other simulated scenarios as well, and it suggests that synchrony

per se is indeed destabilising. However, the results in Figs 1, 2 and 5

make it clear that the indirect positive synchrony–DIS relationship,

due to common factors promoting both processes, can swamp the

direct negative synchrony–DIS relationship, resulting in a strong

positive correlation.

The positive synchrony–DIS relationship is of course not universal.

When we look across a range of different environmental correlations,

for instance, no such positive relationship emerges (Fig. 4). This is

because, although the strength of the environmental spatial correlation

(qe) is important for determining population synchrony, it is instead

the temporal variance in the environment (r2
e ) that directly affects

stability. As a result, environmental conditions that promote syn-

chrony need not also promote DIS and the indirect positive

synchrony–DIS relationship is not present. In this case, therefore,

the net relationship between synchrony and dispersal-induced stability

is strongly negative. A negative net synchrony–DIS relationship also

emerges when we look across dispersal rates, but define stability in

terms of either local or global extinction (Fig. 3), suggesting that
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(d) Figure 5 The relationship between synchrony and dispersal-

induced stability that is generated by varying the local dynamics,

determined by k and k. Synchrony was measured as the

correlation in log host densities, and stability was measured by

(a, b) variance in host density, (c) the frequency of local

extinctions or (d) the global extinction rate. In all cases, DIS is

the ratio of stability in the absence of dispersal to stability with

dispersal. Histograms show the synchrony–DIS relationships for

(a,c-d) the Ricker model and (b) the negative binomial model

across a range of scenarios (see Table 1 and Appendix S2).

Significant (P < 0.05) synchrony–DIS correlations are shown in

black and non-significant correlations are shown in white. The

relationship is usually positive, as predicted by the AR(1) model.
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Figure 6 An example showing variation among replicate simulations. The dots,

shown with a regression line, are from 50 realisations of the negative binomial

model under parameter set (v) and global density independent prey dispersal (d ¼
0.1). Stability is measured as host variance, as in Fig. 2. (Note, each dot in Fig. 2a

represents the average of 50 such realisations for a given value of d.)
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dispersal rates giving high synchrony decrease population variance the

most, but decrease extinction risk the least (see also Reeve 1988, 1990;

Legendre et al. 2008).

The results presented here have focused on models with bounded

dynamics. In the absence of dispersal, the dynamics of the negative

binomial model with k > 1 are dramatically different than when

k < 1: when isolated, these subpopulations exhibit diverging oscilla-

tions and eventual deterministic extinction. When linked by dispersal,

some such populations will be saved from extinction via dispersal-

induced stability, but others will not. It would be interesting to study

the synchrony–DIS relationship in these highly unstable populations

as well, but methods different from those used here would be needed.

Populations that are on their way to deterministic extinction are non-

stationary and for these, statistics like the variance and correlation of

population densities are time-dependent and thus not useful descrip-

tors of stability and synchrony, respectively. Stability could of course

be measured by extinction rates, but an entirely different measure of

synchrony would be necessary. For subpopulations experiencing

frequent local extinctions and recolonisations, Hudgens (2007)

suggested measuring synchrony as the correlation in the timing of

local extinctions. Preliminary analyses of the Ricker model and the

unstable (k > 1) host-parasitoid model suggest that although these

two measures of synchrony – correlation in population densities and

correlation in local extinction times – tend to be positively correlated,

they can behave very differently and result in quite different

synchrony–DIS relationships. The same simulations, for instance,

can show that global extinction-based DIS is negatively related to

correlation in population density and positively related to correlation

in local extinction times. Additional research is needed to identify the

best ways to compare synchrony–DIS relationships across some very

different types of models.

We all know that ecological processes occur in both time and space,

but the complexity of ecological systems often forces us to study just

the spatial dimension or the just temporal dimension of the patterns

we see. This approach is indispensable, as it is often impossible to gain

meaningful insight into any ecological problem without first breaking

it down into smaller, focused questions. However, once the separate

pieces are sufficiently well-studied such that we have a good

understanding of how they work, it serves us well to return to the

bigger picture. Herein, I have provided a start at synthesising spatial

and temporal effects of dispersal (synchrony and stability, respectively)

that are reasonably well-understood in isolation. Such efforts to bridge

separate, but related lines of inquiry should ultimately help us arrive at

new theoretical insights. For multi-species models, there is significant

recent interest in understanding the consequences of interspecific

synchrony; that is, correlations in the dynamics of competitors or of a

consumer and its resource (e.g. Ripa & Ives 2003; Vasseur & Fox

2007; Gouhier et al. 2010). It would likely be informative to build on

the ideas presented here to address community-scale questions.

This synthesis brings to light some specific ideas that warrant

attention. The emphasis in the DIS literature on the important

destabilising influence of perfect synchrony has overshadowed a

consideration of any positive indirect synchrony–DIS relationships.

The results in this study demonstrate that under a broad range of

circumstances, the indirect relationship is actually the main determi-

nant of how synchrony and stability coincide. Understanding the

multiple effects of altering dispersal rates is much more than an

abstract theoretical question; it is indeed an immensely important

endeavor at a time when human activities can dramatically alter natural

dispersal rates. Predicting and ameliorating the effects of human

activities that interfere with natural dispersal requires a sophisticated

understanding of the total impact of dispersal on populations. Some

have argued that fragmentation might reduce regional extinction risk

by inhibiting synchrony and thus reducing the potential for all local

subpopulations to become extinct at once (e.g. Heino et al. 1997; Earn

et al. 2000; Johst & Schöps 2003). On the other hand, one could argue

that fragmentation should elevate extinction risk by interfering with

dispersal-driven stabilising mechanisms (e.g. Reeve 1988; Hassell et al.

1991b; Adler 1993; Engen et al. 2002). Clearly, we need to examine

both the stabilising and synchronising effects of dispersal, and the way

those effects interact to identify which human activities pose the

greatest threat to species persistence.
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